Genetic engineering of Pyrococcus furiosus to use chitin as a carbon source
نویسندگان
چکیده
BACKGROUND Bioinformatic analysis of the genes coding for the chitinase in Pyrococcus furiosus and Thermococcus kodakarensis revealed that most likely a one nucleotide insertion in Pyrococcus caused a frame shift in the chitinase gene. This splits the enzyme into two separate genes, PF1233 and PF1234, in comparison to Thermococcus kodakarensis. Furthermore, our attempts to grow the wild type strain of Pyrococcus furiosus on chitin were negative. From these data we assume that Pyrococcus furiosus is most likely unable to use chitin as a carbon source. The aim of this study was to analyze in vivo if the one nucleotide insertion is responsible for the inability to grow on chitin, using a recently described genetic system for Pyrococcus furiosus. RESULTS A marker-less genetic system for Pyrococcus furiosus was developed using simvastatin for positive selection and 6-methylpurine for negative selection. Resistance against simvastatin was achieved by overexpression of the hydroxymethylglutaryl coenzyme A reductase gene. For the resistance to 6-methylpurine the hypoxanthine-guanine phosphoribosyltransferase gene was deleted. This system was used to delete the additional nucleotide at position 1006 in PF1234. The resulting chitinase in the mutant strain was a single subunit enzyme and aligns perfectly to the enzyme from Thermococcus kodakarensis. A detailed analysis of the wild type and the mutant using counted cell numbers as well as ATP and acetate production as growth indicators revealed that only the mutant is able to use chitin as a carbon source. An additional mutant strain containing a reduced chitinase version containing just one catalytic and one chitin-binding domain showed diminished growth on chitin in comparison to the mutant containing the single large enzyme. CONCLUSIONS Wild type Pyrococcus furiosus is most likely unable to grow on chitin in the natural biotope due to a nucleotide insertion which separates the chitinase gene into two ORFs, whereas a genetically engineered strain with the deleted nucleotide is able to grow on chitin. The overall high sequence identity of the two chitinases between P. furiosus and T. kodakarensis indicates that this mutation occurred very recently or there is still some kind of selection pressure for a functional enzyme using programmed +/-1 frameshifting.
منابع مشابه
Expression of Genetically Engineered Chitinase Gene of Pyrococcus furiosus
Wild-type Pyrococcus furiosus is most likely unable to grow on chitin in the natural biotope due to a nucleotide insertion which separates the chitinase gene into two ORFs, whereas a genetically engineered strain with the deleted nucleotide is able to grow on chitin. In the latest studies, the recombinant enzyme activity against the crystal chitins was examined. But there are still some conflic...
متن کاملAn alternative bacterial expression system using Bacillus pumilus SG2 chitinase promoter
Background: Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bacterial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacterial species. Among Bacillus spe...
متن کاملHeterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus
Carbon monoxide (CO) is an important intermediate in anaerobic carbon fixation pathways in acetogenesis and methanogenesis. In addition, some anaerobes can utilize CO as an energy source. In the hyperthermophilic archaeon Thermococcus onnurineus, which grows optimally at 80°C, CO oxidation and energy conservation is accomplished by a respiratory complex encoded by a 16-gene cluster containing a...
متن کاملMetabolic and evolutionary relationships among Pyrococcus Species: genetic exchange within a hydrothermal vent environment.
Pyrococcus furiosus and Pyrococcus woesei grow optimally at temperatures near 100 degrees C and were isolated from the same shallow marine volcanic vent system. Hybridization of genomic DNA from P. woesei to a DNA microarray containing all 2,065 open reading frames (ORFs) annotated in the P. furiosus genome, in combination with PCR analysis, indicated that homologs of 105 ORFs present in P. fur...
متن کاملThe genomics of LUCA.
To understand the nature and evolution of LUCA, or Last Universal Common Ancestor, the minimum genome of LUCA has been identified based on the genes common to the eight primitive Euryarchaea and Crenarchaea species Methanopyrus kandleri, Methanothermobacter thermautotrophicum, Methanococcus jannaschii, Pyrococcus abyssi, Pyrococcus furiosus, Pyrococcus horikoshii, Aeropyrum pernix and Pyrobacul...
متن کامل